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Abstract
The approach based on a multimode system of q-deformed oscillators and the
related picture of an ideal gas of q-bosons enables us to effectively describe the
observed non-Bose-type behaviour, in experiments on heavy-ion collisions,
of the intercept (or the ‘strength’) λ of the two-particle correlation function
of identical pions or kaons. In this paper we extend the main results of
that approach in two aspects: first, we derive in explicit form the intercepts of
n-particle correlation functions in the case of the q-Bose gas model and, second,
provide their explicit two-parameter (or qp-) generalization.

PACS numbers: 02.20.Uw, 05.30.Pr, 25.75.−q, 25.75.Gz

1. Introduction

Quantum and q-deformed algebras are known to be very useful in diverse problems in
many branches of mathematical physics and modern field theory [1, 2], as well as in
molecular/nuclear spectroscopy [3]. Equally fruitful should be their direct application
in the phenomenology of particle properties (see [4–7], and also [8] with references therein).
Recently, it has been demonstrated [9] that the use of multimode q-deformed oscillator algebras
along with the related picture of an ideal gas of q-bosons (q-Bose gas model) proves its
efficiency in modelling the unusual properties of the intercept λ of the two-particle correlation
function, which is the measured value corresponding to zero relative momentum of two
identical mesons, pions or kaons, produced and registered in relativistic heavy-ion collisions
[10], where λ exhibits a sizable observed deviation from the naively expected purely Bose–
Einstein-type behaviour. The model predicts [11, 12], for a fixed value of q, the exact shape
of dependence of the intercept λ = λ(K) on the pair mean momentum K and suggests
asymptotic coincidence of λπ and λK of pions and kaons. Put in other words, the intercept λ,
being connected directly and unambiguously with the deformation parameter q, tends in the
limit of large pair mean momentum to a constant, less than unity, determined just by q and
shared by pions and kaons. It is worth noting that confronting the predicted λπ behaviour with
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the corresponding data from STAR/RHIC shows good agreement [12], at least in the case of
two-pion correlations.

While two-particle correlations are known to carry information about the spacetime
structure and dynamics of the emitting source [10], in connection with some recent experiments
it was pointed out [13, 14] that taking into consideration, in addition to the single-particle
spectra and two-particle correlations based analysis, the number of data concerning three-
particle correlations provides important supplementary information on the properties of the
emitting region, valuable for confronting theoretical models with concrete experimental data.
Likewise, study of four- and five-particle correlations is also desirable [15]. All that motivates
the main goal of this paper is to derive the explicit formulae for the intercepts of higher order
(n-particle, with n � 3) HBT correlations. Moreover, below we will obtain in explicit form
the intercepts λ(n) of n-particle correlations for the extended version of the developed approach
when one uses the two-parameter qp-deformation of bosonic oscillators and the model of a
gas of qp-bosons.

Right from the very beginning, and up to the present, in the applications
of the q-algebras to the phenomenology of hadrons there is growing evidence [6, 8] that
the phase form of the q-parameter is of great importance. Therefore, we hope that possessing
the most general formulae for n-particle correlations and confronting them with the data from
contemporary experiments will be helpful in clearing up the actual preference of choosing
the form q = exp(iθ) of the deformation parameter. It is just this alternative for the choice
of the deformation parameter q that implies a very attractive physical interpretation of the
q-parameter as the one that is directly linked to the mixing issue of elementary particles, either
of bosons [6, 16] or fermions [8, 17].

The paper is organized as follows: section 1 contains a sketch of necessary preliminaries
concerning the two most popular types of q-deformed oscillators, as well as their two-parameter
or qp-generalization. In section 2 we discuss basic points of the approach based on the q-Bose
gas model, along with consideration of single-particle q-distributions. The remaining two
sections are devoted to the properties of two- and three-particle correlation functions, and to
the main topic of this paper—the results on the multi-particle (nth order) correlations, for
the algebras of both the q-deformed and the qp-deformed versions of generalized oscillators.
Details of the derivation of basic formulae are relegated to the appendix.

2. q-deformed and qp-deformed oscillators

We begin with a necessary set-up concerning two types of q-deformed oscillators, and also
their two-parameter generalization.

2.1. q-oscillators of AC type

The q-oscillators of the Arik–Coon (or AC) type are defined by the relations [18, 19]

aia
†
j − qδij a

†
j ai = δij [ai, aj ] = [

a
†
i , a

†
j

] = 0
(1)

[Ni , aj ] = −δij aj

[
Ni , a

†
j

] = δij a
†
j [Ni ,Nj ] = 0

where −1 � q � 1. Note that this is the system of independent q-oscillators as clearly seen at
i �= j .

From the vacuum state given by ai |0, 0, . . .〉 = 0 for all i, the basis state vectors

|n1, . . . , ni, . . .〉 ≡ 1√�n1�!�n2�! · · · �ni�! · · ·
(
a
†
1

)n1
(
a
†
2

)n2 · · · (a†
i

)ni · · · |0, 0, . . .〉 (2)
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are constructed as usual, so that

a
†
i | . . . , ni, . . .〉 =

√
�ni +1�| . . . , ni +1, . . .〉 ai | . . . , ni, . . .〉 =

√
�ni�| . . . , ni −1, . . .〉

Ni |n1, . . . , ni, . . .〉 = ni |n1, . . . , ni, . . .〉. (3)

Here the notation �. . .� for so-called basic numbers and the corresponding extension of
factorial, namely

�r� ≡ 1 − qr

1 − q
�r�! ≡ �1��2� · · · �r − 1��r� �0�! = �1�! = 1. (4)

are used. The q-bracket �A� for an operator A is understood as a formal series. At q → 1,
from �r� and �A� one recovers r and A, thus going back to the formulae for the standard
bosonic oscillator. For the deformation parameter q such that −1 � q � 1, the operators
a
†
i , ai are conjugates of each other.

For q �= 1, the bilinear a
†
i ai depends nonlinearly on the number operator Ni :

a
†
i ai = �Ni� (5)

so that at q = 1 the familiar equality a
†
i ai = Ni is recovered.

2.2. q-oscillators of BM type

The q-oscillators of Biedenharn–Macfarlane (BM) type are defined by the relations [19, 20]

[bi, bj ] = [
b
†
i , b

†
j

] = 0 [Ni, bj ] = −δij bj

[
Ni, b

†
j

] = δij b
†
j

[Ni,Nj ] = 0 bib
†
j − qδij b

†
j bi = δij q

−Nj bib
†
j − q−δij b

†
j bi = δij q

Nj .
(6)

In this case the extended Fock space of basis state vectors is constructed in a way similar to
the above case, with the only modification that now we use, instead of basic numbers, the
q-bracket and q-numbers, namely

b
†
i bi = [Ni]q [r]q ≡ qr − q−r

q − q−1
. (7)

Formulae similar to (2)–(5) are valid for the operators bi, b
†
j if, instead of (4), we now use

definition (7) for the q-bracket. Clearly, the equality b
†
i bi = Ni holds only in the ‘no-

deformation’ limit of q = 1. For consistency of the conjugation, we put

q = exp(iθ) 0 � θ < π. (8)

2.3. qp-oscillators

Besides the q-bosons of AC-type and BM-type, in what follows we will also consider the
two-parameter (or qp-) generalization of deformed oscillators given by the relations [21]

[N(qp), A] = −A [N(qp), A†] = A†

AA† − qA†A = pN AA† − pA†A = qN (9)

from which

A†A = [[N(qp)]]qp with [[X]]qp ≡ qX − pX

q − p
. (10)

In this definition we have shown only one mode, although in what follows we will deal with
the system, like in (1) or (6), of independent (that is, mutually commuting) copies/modes of
the qp-deformed oscillator. Note that X in (10) can be either a number or an operator. Clearly,
putting p = 1 immediately leads us to the AC-case while putting p = q−1 reduces it to the
BM-type of q-bosons.
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3. Statistical q-distributions

For the dynamical multi-particle (say, multi-pion or multi-kaon) system, we consider the
model of an ideal gas of q-bosons (IQBG) by taking the free, or non-interacting, Hamiltonian
in the form [22–24]

H =
∑

i

ωiNi (11)

where ωi =
√

m2 + k2
i ,Ni is the number operator given in (5) or (7) or (10) and the subscript i

labels different modes. Let us note that among a variety of possible choices of Hamiltonians,
choice (11) is the unique non-interacting one, which possesses an additive spectrum (see [22,
23]). Clearly, it is assumed that the 3-momenta of particles take their values from a discrete
set (i.e. the system is contained in a large finite box of volume ∼L3).

To obtain basic statistical properties, one evaluates thermal averages

〈A〉 = Sp(Aρ)

Sp(ρ)
ρ = e−βH

where β = 1/T and the Boltzmann constant is set equal to 1. Calculating, say, in the case
of AC-type q-bosons the thermal average 〈qNi 〉, with Ni from (5), with respect to the chosen
Hamiltonian (11), we obtain

〈qNi 〉 = eβωi − 1

eβωi − q
(12)

and the distribution function (recall that −1 � q � 1) is found as [22, 23]〈
a
†
i ai

〉 = 1

eβωi − q
. (13)

The usual Bose–Einstein distribution corresponds to the no-deformation limit of q → 1.
In the particular cases q = −1 or q = 0 the distribution function (13) yields respectively
Fermi–Dirac or classical Boltzmann ones. Note that this coincidence is rather a formal one:
the defining relations (1) at q = −1 or q = 0 differ from those for the system of fermions or the
non-quantal (classical) system. The formal coincidence of equation (13) at q = −1 with
the Fermi–Dirac distribution can be interpreted in terms of the impenetrability (or hard-core)
property of such bosons. The difference with the system of genuine fermions lies in commuting
(versus truly fermionic anticommuting) of non-coinciding modes at q = −1, see (1).

Now consider BM-type q-bosons. The Hamiltonian is chosen again as that of IQBG, but
now with the number operator given in (7), i.e.

H =
∑

i

ωiNi. (14)

Calculation of 〈q±Ni 〉 yields 〈q±Ni 〉 = (eβωi − 1)(eβωi − q±1)−1. Then, from the formula〈
b
†
i bi

〉 = (eβωi − q)−1〈q−Ni 〉 the expression for the q-deformed distribution function (note that
q + q−1 = [2]q = 2 cos θ ) follows (see also [22, 23]):

〈
b
†
i bi

〉 = eβωi − 1

e2βωi − 2 cos θ eβωi + 1
. (15)

Although the deformation parameter q is taken as complex according to (8), the explicit
expression (15) for the q-distribution function shows that it is real.

It is easily seen that the shape of the function f (k) ≡ 〈b†b〉(k) in (15) is such that the
q-deformed distribution function with q �= 1 is intermediate relative to the other two curves,
the standard Bose–Einstein distribution function and the classical Boltzmann one (the same is
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also evident for the above q-distribution function (13) of the AC-type q-bosons). That is, the
deviation of the q-distribution (15) from the quantum Bose–Einstein distribution goes, when q
goes away from the no-deformation limit q = 1, in the ‘right direction’, towards the classical
Boltzmann one.

4. Two- and three-particle correlations of q-bosons

Although the formulae for two-particle correlation functions have been obtained earlier [9],
we recall them here for the sake of a more complete exposition. In the remaining part of this
section some new results will be presented. So, we consider two-particle correlations first
with the AC-type of q-bosons. Starting with the identity

a
†
i a

†
j akal−q−δik−δil a

†
j akala

†
i = [

a
†
i , a

†
j

]
akal + a

†
j

[
a
†
i , ak

]
q−δik

al + q−δik a
†
j ak

[
a
†
i , al

]
q−δil

where [X, Y ]κ ≡ XY −κYX, by taking thermal averages of both sides we find〈
a
†
i a

†
j akal

〉 = eβωi − q

q1−δik−δil eβωi − q

(〈
a
†
j al

〉〈
a
†
i ak

〉
+ q−δij

〈
a
†
j ak

〉〈
a
†
i al

〉)
.

For coinciding modes this leads to the formula〈
a
†
i a

†
i aiai

〉 = 1 + q

(eβωi − q)(eβωi − q2)
. (16)

From the last relation and the q-distribution (13) the ratio under question (called the intercept)
gives the result:

λi ≡
〈
a
†
i a

†
i aiai

〉
〈
a
†
i ai

〉2 − 1 = −1 +
(1 + q)(eβωi − q)

eβωi − q2
= q

eβωi − 1

eβωi − q2
. (17)

Note that in the non-deformed limit q → 1 the value λBE = 1, proper for Bose–Einstein
statistics, is correctly reproduced from equation (17). This obviously corresponds to the
Bose–Einstein distribution obtained in (13) at q → 1. The quantity (intercept) λ is important
because it can be directly confronted with empirical data. In this respect, let us note that there
exists a direct asymptotic relation λ = q, which corresponds to the limit of large momentum
or low temperature (in that case βω → ∞).

We now go over to the Biedenharn–Macfarlane q-oscillators (6) and find the formula for
the monomode two-particle correlations, i.e. for identical particles with coinciding momenta.
From the relation〈

b
†
i b

†
i bibi

〉 − q2
〈
b
†
i bibib

†
i

〉 = −〈
b
†
i biq

Ni
〉
(1 + q2)

valid for the monomode case at hand, we deduce〈
b
†
i b

†
i bibi

〉 = 1 + q2

q2 eβωi − 1

〈
b
†
i biq

Ni
〉
.

Evaluation of the thermal average on the rhs yields
〈
b
†
i biq

Ni
〉 = q/(eβωi − q2). Using this we

find the expression for the two-particle distribution, namely〈
b
†
i b

†
i bibi

〉 = 2 cos θ

e2βωi − 2 cos(2θ) eβωi + 1
. (18)

Then, the desired formula for the intercept of two-particle correlations of the BM-type
q-bosons, with the notation ti ≡ cosh(βωi) − 1, reads

λi = −1 +

〈
b
†
i b

†
i bibi

〉
(〈
b
†
i bi

〉)2 = 2 cos θ(ti + 1 − cos θ)2

t2
i + 2(1 − cos2 θ)ti

(19)

and again is a real function.
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4.1. Three-particle correlations of the q-bosons of AC-type

Derivation of three-particle correlation functions proceeds analogously to the two-particle
case. Considering the q-deformed oscillators of AC-type we start with the easily verifiable
identity

a
†
j a

†
kalamasa

†
i = a

†
j a

†
kalam

[
as, a

†
i

]
qδis

+ qδis
{
a
†
j a

†
kal

([
am, a

†
i

]
qδim

)
as

+ qδim
(
a
†
j a

†
k

([
al, a

†
i

]
qδil

)
amas + qδil a

†
j a

†
ka

†
i alamas

)}
and take thermal averages of both the sides. This leads to the equality

〈
a
†
i a

†
j a

†
kalamas

〉 = eβωi − q

eβωi − qδis+δim+δil

(〈
a
†
j a

†
kalam

〉〈
a
†
i as

〉
+ qδis

〈
a
†
j a

†
kalas

〉〈
a
†
i am

〉
+ qδis+δim

〈
a
†
j a

†
kamas

〉〈
a
†
i al

〉)
which in view of

〈
a
†
i aj

〉 = δij

〈
a
†
i ai

〉 = δij /(eβωi − q) (cf (13)), in the monomode
i = j = k = l = m = s case yields

〈
a
†
i a

†
i a

†
i aiaiai

〉 = (1 + q)(1 + q + q2)

(eβωi − q)(eβωi − q2)(eβωi − q3)
. (20)

From the latter relation, dividing it by 〈a†
i ai〉3, we derive the desired expression for the intercept

(or strength) λ(3) of the three-particle correlation function (we drop the label i)

λ
(3)
AC ≡ 〈a†3a3〉

〈a†a〉3
− 1 = (1 + q)(1 + q + q2)(eβω − q)2

(eβω − q2)(eβω − q3)
− 1. (21)

In a similar manner, it is possible to derive the (intercept of ) three-particle correlation
function for the system of BM-type q-bosons. However, intead of doing this, in the next
section we will derive the most general results for both 3- and n-particle, n > 3, correlation
functions in the two-parameter (i.e. qp-deformed) extension of bosons, from which the desired
formulae for the BM-type of q-bosons will follow as particular cases.

5. n-particle correlations: q-bosons and qp-bosons

As an extension of equations (16), (20), it is not difficult to derive, using the method of
induction, the following general result for the n-particle monomode distribution functions of
AC-type q-Bose gas:〈(
a
†
i

)n
(ai)

n
〉 = �n�!∏n

r=1(e
βωi − qr)

�m� ≡ 1 − qm

1 − q
= 1 + q + q2 + · · · + qm−1. (22)

From this expression the desired formula for the intercepts λ(n) ≡ 〈a†nan〉
〈a†a〉n − 1 of n-particle

correlations of AC-type q-bosons immediately follows (with i dropped)

λ
(n)
AC = −1 +

�n�!(eβω − q)n−1∏n
r=2(e

βω − qr)
. (23)

In the asymptotics of βω → ∞ (i.e. for very large momenta or, at fixed momentum, for very
low temperature) the result depends only on the deformation parameter

λ
(n)asympt
AC = −1 + �n�! = −1 +

n∏
k=1

(
k∑

r=0

qr

)

= (1 + q)(1 + q + q2) · · · (1 + q + · · · + qn−1) − 1. (24)
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This remarkable fact can serve as test one when confronting the developed approach with the
numerical data for pions and kaons extracted from the experiments on relativistic heavy ion
collisions.

Now we come to the base point.

5.1. Extension to qp-bosons

The above results admit direct extension to the case of the two-parameter deformed (or qp-)
oscillators and thus to the qp-Bose gas model. For this, we use in analogy with (11) and (14)
the Hamiltonian

H =
∑

i

ωiN
(qp)

i . (25)

With (25), the expression for general n-particle distribution functions is obtained (see the
appendix for its derivation) as

〈(
A

†
i

)n
(Ai)

n
〉 = [[n]]qp!(eβωi − 1)∏n

r=o(e
βωi − qrpn−r )

(26)
[[m]]qp ≡ qm − pm

q − p
[[m]]qp! = [[1]]qp[[2]]qp · · · [[m − 1]]qp[[m]]qp.

In the particular cases where n = 1 and n = 2 (note that [[2]]qp = p + q) this obviously yields
the formulae 〈

A
†
iAi

〉 = (eβωi − 1)

(eβωi − p)(eβωi − q)〈(
A

†
i

)2
(Ai)

2
〉 = (p + q)(eβωi − 1)

(eβωi − q2)(eβωi − pq)(eβωi − p2)

(note that the latter two formulae were also found in [25]).
From (26), after dividing it by

〈
A

†
iAi

〉n
, the most general result for the nth order qp-

deformed extension of the intercept λ(n), omitting the i, follows as

λ(n)
q,p ≡ 〈A†nAn〉

〈A†A〉n − 1 = [[n]]qp!
(eβω − p)n(eβω − q)n

(eβω − 1)n−1
∏n

k=0(e
βω − qn−kpk)

− 1 (27)

which constitutes our main result. This provides a generalization not only to the case of nth
order correlations but also to the two-parameter (qp-)deformation.

Let us give the asymptotical form of intercepts in this most general case, λ(n)
q,p

λ(n),asympt
q,p = −1 + [[n]]qp! = −1 +

n∏
k=1

(
k∑

r=0

qrpk−r

)
. (28)

As observed, for each case of deformed bosons (the AC-type, the BM-type, and their qp-
generalization) the asymptotics of the nth order intercept takes the form of the corresponding
generalization of the usual n-factorial (the latter yields a pure Bose–Einstein n-particle
correlation intercept).

Finally, let us specialize the obtained formulae to the case of q-bosons of BM type for
n = 3, that is

λ
(3)
BM = −1 +

[2]q[3]q(e2βω − 2 eβω cosθ + 1)2

(eβω − 1)2(e2βω − 2 eβω cos(3θ) + 1)
(29)

λ
(3),asympt
BM = −1 + [2]q[3]q = −1 + 2 cos θ(2 cos θ − 1)(2 cos θ + 1). (30)
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In conclusion, we note that it would be of great interest and importance to make a detailed
comparative analysis of the obtained results with the existing data for three-particle correlations
of pions and kaons produced and registered in the experiments on relativistic heavy ion
collisions, with the objective of drawing some implications concerning the immediate physical
meaning and admissible values of the deformation parameters p, q. Details of such analysis
will be presented elsewhere.

Appendix

Here we derive the general formula, see (26), for the (monomode) n-particle qp-bosonic
distribution functions:

〈a†nan〉 = [[n]]qp!(eβω − 1)∏n
r=0(e

βω − prqn−r )
. (A.1)

For convenience, in (A.1) and below, we drop the mode-labelling subscript i and use a†, a,N

instead of A†, A,N(qp) respectively. The proof proceeds in a few steps. First let us derive the
recursion relation

〈a†nan〉 = 〈a†n−1an−1pN 〉 [[n]]qp
(eβω − qn)pn−1

. (A.2)

For this, we use qp-deformed commutation relations and evaluate the thermal averages:

〈a†nan〉 = 〈a†n−1aa†an−1〉 1

q
− 〈a†n−1pNan−1〉 1

q

= 〈a†n−1aa†an−1〉 1

q
− 〈a†n−1an−1pN 〉 1

qpn−1

= 〈a†n−1a2a†an−2〉 1

q2
− 1

q

(
1

pn−1
+

1

qpn−2

)
〈a†n−1an−1pN 〉 = · · ·

= 〈a†n−1ana†〉 1

qn
− 1

q

(
1

pn−1
+

1

qpn−2
+ · · · +

1

qn−1

)
〈a†n−1an−1pN 〉

= 〈a†n−1ana†〉 1

qn
− 〈a†n−1an−1pN 〉 [[n]]qp

qnpn−1

= 〈a†nan〉eβω

qn
− 〈a†n−1an−1pN 〉 [[n]]qp

qnpn−1
. (A.3)

From this equation (A.2) readily follows. After the kth iteration of this procedure we find

〈a†n−kan−kpkN 〉 = 〈a†n−(k+1)an−(k+1)p(k+1)N 〉 [[n − k]]qp
(eβω − qn−kpk)pn−(2k+1)

. (A.4)

Indeed,

〈a†n−kan−kpkN 〉 = 〈a†n−(k+1)aa†an−k−1pkN 〉 1

q
− 〈a†n−(k+1)pNan−(k+1)pkN 〉 1

q
= · · ·

= 〈a†n−kan−kpkN 〉 eβω

qn−kpk

− 1

q

(
1

pn−1−k
+

1

qpn−2−k
+ · · · +

1

qn−k−1

)
〈a†n−(k+1)an−(k+1)p(k+1)N 〉

= 〈a†n−kan−kpkN 〉 eβω

qn−kpk
− 〈a†n−(k+1)an−(k+1)p(k+1)N 〉 [[n − k]]qp

qn−kpn−(k+1)

(A.5)
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that is equivalent to formula (A.4). Applying this formula step by step n times yields the
relation

〈a†nan〉 = [[n]]qp!∏n−1
r=0(e

βω − prqn−r )
∏n−1

k=0 pn−(2k+1)
〈pnN 〉. (A.6)

From the latter, with the account of

〈pnN 〉 = eβω − 1

eβω − pn

n−1∏
k=0

pn−(2k+1) = 1 (A.7)

we finally arrive at the desired formula (A.1), for the higher order (n-particle) monomode
distribution functions of the model of qp-Bose gas.

References

[1] Biedenharn L 1990 Group Theoretical Methods in Physics (Lecture Notes in Physics vol 382) ed V V Dodonov
and V I Man’ko (Berlin: Springer) p 147

[2] Zachos C 1990 Proc. Argonne Workshop on Quantum Groups ed T Curtright, D Fairlie and C Zachos (Singapore:
World Scientific)

[3] Chang Z 1995 Phys. Rep. 262 137
[4] Chaichian M, Gomez J F and Kulish P 1993 Phys. Lett. B 311 93
[5] Fairlie D and Nuits J 1995 Nucl. Phys. B 433 26
[6] Gavrilik A M 1994 J. Phys. A: Math. Gen. 27 91
[7] Gavrilik A M and Iorgov N Z 1998 Ukr. J. Phys. 43 1526 (Preprint hep-ph/9807559)
[8] Gavrilik A M 2001 Nucl. Phys. B (Proc. Suppl.) 102–3 298 (Preprint hep-ph/0103325)
[9] Anchishkin D V, Gavrilik A M and Iorgov N Z 2000 Eur. Phys. J. A 7 229 (Preprint nucl-th/9906034)

[10] Heinz U and Jacak B V 1999 Ann. Rev. Nucl. Part. Sci. 49 529
[11] Anchishkin D V, Gavrilik A M and Iorgov N Z 2000 Mod. Phys. Lett. A 15 1637 (Preprint hep-ph/0010019)
[12] Anchishkin D V, Gavrilik A M and Panitkin S 2001 Transverse momentum dependence of intercept parameter

λ of two-pion (-kaon) correlation functions in q-Bose gas model Preprint hep-ph/0112262
[13] Adams J et al 2003 Three-pion HBT correlations in relativistic heavy ion collisions from the STAR experiment

Preprint nucl-ex/0306028
[14] Heinz U and Zhang Q H 1997 Phys. Rev. C 56 426
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